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Process interactions 
Eric Baković & Lev Blumenfeld — for de Lacy & Jardine (eds.), The Cambridge Handbook of Phonology, 
2nd ed. 

1 Introduction 
Generative phonological grammars are complex functions that map input representations (≈ underlying 
forms) to output representations (≈ surface forms). These complex functions are understood to consist of 
simpler parts; models of generative phonology differ in how they break the entire complex map down into 
those simpler parts, what those parts are, and how they combine. Sometimes the mechanism by which these 
simpler parts combine is irrelevant: the mere presence of each of the simpler parts in the overall grammar 
is sufficient. But sometimes the combination mechanism does matter, because different ways of combining 
some simpler parts can lead to different results. It is these meaningful combinations that are referred to as 
INTERACTIONS. 

In the earliest models of generative phonology (e.g. Chomsky & Halle 1968, henceforth SPE), the complex 
function is broken down into REWRITE RULES that combine with each other via SERIAL ORDERING. In more 
recent models (e.g. Prince & Smolensky 1993/2004, henceforth OT), the complex function is broken down 
into individual CONSTRAINTS that combine with each other via RANKING. The SPE-like rewrite rule corre-
sponds most directly to what is commonly referred to as a PROCESS, and serial ordering of rewrite rules has 
dominated discussions of ‘process interaction’ in the literature. We follow these direct and dominant threads 
in this chapter, presenting some of the work that has attempted to elucidate how processes can interact in a 
grammar. 

We first set out on some well-worn paths in Section 2, briefly surveying the literature on rule ordering that 
has been sufficiently influential for its ideas to be considered “classical”. In Section 3 we map out this 
territory in a new way, by offering a formalized treatment that gives the tools to delimit a more precise and 
complete typology of process interactions. In Section 4 we focus on some consequences of process inter-
action for phonological grammars and the extent to which phonologically significant generalizations are 
true of input-output maps. In Section 4.1, we use our formalization of process interaction to circumscribe 
phonological opacity. In Section 4.2, we turn our attention to a superficially different condition on phono-
logical grammars, output-drivenness, and explore its connection with opacity. Finally, in Section 5 we dis-
cuss types of interactions that involve blocking: disjunctive application in Section 5.1, nonderived environ-
ment blocking in Section 5.2, and blocking by constraint in Section 5.3. A few common threads tie our 
discussion together. Methodologically, we hope to show by example that questions about phonological 
theory are productively addressed with formally precise treatment. Substantively, we hope to show that 
many of the concepts relating to interaction that have been explored by generative phonologists over the 
years are amenable to a unified treatment within our formal approach. 

In the remainder of this introduction we offer some remarks on the definition of “process” that we use in 
this chapter. We begin by assuming that phonological representations consist of strings of segments, with 
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each segment being a matrix (set) of feature-value pairs.1 Let us assume further that we are given a set of 
input strings, the output strings that those input strings map to, a correspondence relation between segments 
in the input strings and segments in the output strings, and information on the morphological identity of 
input segments. Together, we refer to these givens as a LANGUAGE. A language can be described using a 
GRAMMAR, which consists of some combination of string-to-string functions that we call PROCESSES. 

What a process is, and how processes are combined in the grammar to describe the language, depends on 
the theoretical frame. Adopting the frame of SPE, a process 𝑃 is a function statable as a rewrite rule with 
the familiar 𝐴 → 𝑏 / 𝐶 ＿ 𝐷 schema. 𝐴 is the FOCUS of 𝑃, a feature matrix describing a natural class of 
segments. The CHANGE made by 𝑃 is given by 𝑏, a set of feature-value pairs to be substituted for potentially 
conflicting values in 𝐴 by priority union (Reiss 2022): if α is a member of the natural class described by 𝐴, 
then α⊌𝑏 is a feature matrix identical to α except that the feature-value pairs of 𝑏 replace α’s corresponding 
feature-value pairs, or are added to α if α does not contain them. 𝐶 and 𝐷 represent the (local) CONTEXT of 
𝐴, with 𝐶 to the left and 𝐷 to the right, and are either feature matrices describing natural classes of segments 
(like 𝐴), boundaries (word, syllable, etc.), or null. Lastly, 𝐴 or 𝑏, but not both, may be “∅”, or null: if 𝐴 is 
null, 𝑃 inserts a segment with the feature values specified in 𝑏; if 𝑏 is null, 𝑃 deletes any member of the 
natural class described by 𝐴.2 We will say that an input string 𝑥 is SUBJECT TO a process 𝑃 iff 𝑃(𝑥) = 𝑦 and 
𝑦 ≠ 𝑥 — in other words, if 𝑃 applies to 𝑥 non-vacuously. 

Within these very broad parameters, any given language can be described by a multitude of grammars. One 
goal of phonological theorizing is to delimit the space of possible grammars by imposing further conditions 
on them. Examples of such conditions are listed in (1). 

(1) Potential additional conditions on processes in SPE-style grammars 
a. Single change condition. Every process changes the value of at most one feature, deletes a segment, 

or inserts a segment. Under this condition, if 𝐴 is a feature matrix then 𝑏 either specifies only one 
feature-value pair or is null; if 𝑏 specifies more than one feature-value pair, then 𝐴 is null. 

b. Alternation condition. If a process 𝑃 maps 𝑥 to 𝑦, then there exists at least one morpheme that 
surfaces with a 𝑦 in the context specified by 𝑃 and that surfaces with a corresponding 𝑥 when not 
in that context. (Note: this means that 𝑃 must apply non-vacuously to at least one input.) 

c. Collapsing condition. No two processes adjacent in the ordering may be replaced by a single pro-
cess resulting in the same grammar. (That is, if two adjacent processes can be notationally collapsed 
into a single process that respects all the other conditions, they must be so collapsed.) 

d. Inventory non-reduction condition. The segmental inventory of the output of a process cannot be a 
proper subset of its input segmental inventory. (Note: subsumed by the alternation condition.) 

Such conditions impose further limitations on what a “process” is in the analysis of a particular language: 
a process is not simply any function stateable as a rewrite rule, but also one that meets certain well-formed-
ness conditions such as those in (1). For our own expository purposes in this chapter, a process is an 

 
1  Of course, phonological representations may consist of more than this: syllabic and other prosodic structure, 
autosegmental structure, and so forth. The limitation to strings of feature matrices here is purely expository. 
2 The SPE rule schema also allows for a number of notational devices with special interpretations that greatly expand 
the power of rewrite rules: curly braces, parentheses, angled brackets, and so on. We set these aside in the interests of 
clarity. 
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𝐴 → 𝑏 / 𝐶 ＿ 𝐷 rewrite rule as defined above, one that makes only one change (respecting the single change 
condition, (1a)) and that is directly motivated by at least one surface alternation (respecting the alternation 
condition, (1b)). 

2 Background 
At the most basic level, an interaction between processes 𝑃 and 𝑄 holds when their order of composition 
matters for at least some inputs; i.e., if there exists an input 𝑥 such that 𝑄(𝑃(𝑥)) ≠ 𝑃(𝑄(𝑥)). Non-interacting 
processes found in the same grammar require no further comment: the output of the grammar is simply the 
result of the separate application of those processes, in either order, or simultaneously. If, on the other hand, 
two interacting processes cooccur in the same grammar, an independent stipulation is needed to specify 
how their action is combined. Historically in the generative literature, (at least) three ways in which pro-
cesses qua rewrite rules can in principle combine with each other to form a grammar have been put forth 
(see Kenstowicz & Kisseberth 1979, Ch. 8).3 

One of these mechanisms is serial ordering, formally equivalent to function composition and the primary 
mechanism adopted in SPE. In this model, two processes 𝑃, 𝑄 must be ordered with respect to each other 
— that is, if they interact, their order matters. Whichever order results in the correct outcome for all inputs 
is then claimed to be the correct order between those two processes in the entire grammar. 

The literature has long identified two basic relations between two processes 𝑃, 𝑄 that make them ‘relevant’ 
to each other such that serial ordering between 𝑃 and 𝑄 is claimed to be necessary (Kiparsky 1968, Chafe 
1968, Wang 1969, and many more since; see a historical overview in Kenstowicz & Kisseberth 2022). One 
relation is traditionally termed FEEDING. For distinct strings4 𝑥, 𝑦, 𝑧, 𝑃 feeds 𝑄 on input 𝑥 if 𝑃(𝑥) = 𝑦, 
𝑄(𝑥) = 𝑥, and 𝑄(𝑦) = 𝑧. That is, 𝑥 is a form that is subject to 𝑃 but not to 𝑄, except that once 𝑃 applies to 𝑥, 
the result 𝑦 is (newly) subject to 𝑄. The other relation is traditionally termed BLEEDING: 𝑃 bleeds 𝑄 on input 
𝑥 if 𝑃(𝑥) = 𝑦, 𝑄(𝑥) = 𝑧, and 𝑄(𝑦) = 𝑦. That is, 𝑥 is a form that is subject to both 𝑃 and 𝑄, except that once 
𝑃 applies to 𝑥, the result 𝑦 is no longer subject to 𝑄. Feeding and bleeding as defined are relations between 
processes, regardless of their actual order of application.5 

Serial ordering thus produces the ‘classical’ interaction typology shown in (2), with the feeding vs. bleeding 
relations along one axis, and one order vs. its opposite along the other axis. Here and in the rest of the 
chapter we use the character “⪧” to refer to process order, and ordering statements are placed in angled 
brackets: “〈𝑃 ⪧ 𝑄〉”. For better or worse, the terms “feeding” and “bleeding” are also used to mean that 𝑃 
successfully affects 𝑄 in the relevant way due to the order ⟨𝑃 ⪧ 𝑄⟩, while the “counter” prefix (originally 
due to Newton 1971) is used to mean that 𝑃 fails to affect 𝑄 in the relevant way due to the order ⟨𝑄 ⪧ 𝑃⟩. 

 
3 In the interests of space, we set aside here what Kenstowicz & Kisseberth (1979:318ff) refer to as the ‘multiple 
application problem’ — the question what to do when an input string contains multiple substrings that are each subject 
to a given rule, or what to do when the application of a rule to an input string results in a string that is newly subject 
to the same rule. 
4 Two strings are identical if their corresponding segments are pairwise identical; they are distinct otherwise. 
5  Chafe’s (1968) more perspicuous (but less memorable) terms for feeding and bleeding relations are ‘additive 
interference’ and ‘subtractive interference’, respectively. 
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(2) Classical typology of process interaction types 

 𝑃 feeds 𝑄 on 𝑥 𝑃 bleeds 𝑄 on 𝑥 

⟨𝑃 ⪧ 𝑄⟩ FEEDING 
𝑄(𝑃(𝑥)) = 𝑄(𝑦) = 𝑧 

BLEEDING 
𝑄(𝑃(𝑥)) = 𝑄(𝑦) = 𝑦 

⟨𝑄 ⪧ 𝑃⟩ COUNTERFEEDING 
𝑃(𝑄(𝑥)) = 𝑃(𝑥) = 𝑦 

COUNTERBLEEDING 
𝑃(𝑄(𝑥)) = 𝑃(𝑧) = 𝑤 

Kiparsky (1968, 1971, 1976) offers two different cross-classifications of this typology. 

In Kiparsky (1968), feeding and counterbleeding are grouped together as ‘unmarked’ interactions in that 
the rules are MAXIMALLY APPLIED in the derivation, whereas bleeding and counterfeeding are ‘marked’ in 
that one or the other of the rules does not have a chance to apply. 

In Kiparsky (1971, 1976), counterfeeding and counterbleeding are grouped together as marked interactions 
resulting in OPACITY of 𝑄. In the case of counterfeeding, 𝑄 is opaque because there is a surface string 𝑦; 
McCarthy (1999) calls this UNDERAPPLICATION OPACITY, because 𝑄 has not applied when it appears it 
should have. In the case of counterbleeding, 𝑄 is opaque because 𝑃 changes the output of 𝑄, 𝑧, to another 
output 𝑤 that disguises the effect of 𝑄;6 McCarthy (1999) calls this OVERAPPLICATION OPACITY, because 
𝑄 has applied when it appears that it shouldn’t have. By contrast, the unmarked feeding and bleeding inter-
actions are called TRANSPARENT. This substantive classification is discussed further in Section 4.1. 

Serial ordering is not the only possible process combination mechanism. Another possibility is FREE 
REAPPLICATION: processes randomly apply and reapply to each other’s outputs until a final output is 
reached that is not subject to any of the processes (= ‘convergence’). This mechanism, implicitly adopted 
as part of the Natural Generative Phonology framework (Hooper[Bybee] 1976), alters the classical typology 
in (2) in two distinct ways. First, free reapplication makes it impossible to achieve the effect of counter-
feeding: 𝑄 can always reapply to the result of 𝑃(𝑥), producing 𝑧, which is identical to the result achieved 
by feeding. Second, if 𝑃 and 𝑄 stand in a bleeding relation, free reapplication does not produce a consistent 
result but instead randomly results in one of two distinct outputs depending on which rule happens to apply 
first. This is because in the case of the bleeding relation, the outputs of both 𝑄(𝑃(𝑥)) and 𝑃(𝑄(𝑥)) are not 
further subject to 𝑃 or 𝑄. If 𝑃 applies first, then bleeding is inevitable because 𝑄 cannot apply to 𝑃(𝑥). If 𝑄 
applies first, then counterbleeding is inevitable because 𝑃 can apply to 𝑄(𝑥). It is thus incoherent to include 
bleeding relations in a grammar with free reapplication — unless perhaps the two outcomes are in free 
variation. Feeding is thus the only interaction type that is able to be reliably modeled with free reapplication, 
and any cases appearing to require one of the other three interaction types must be analyzed otherwise. 

The third process combination mechanism is DIRECT MAPPING, otherwise known as SIMULTANEOUS 
APPLICATION. In this model, each process applies to the same (initial, underlying) input, if that input is 
subject to the process — but then no other processes apply. This mechanism also alters the classical typol-
ogy in two ways. First, it is not possible to get the effect of feeding, because 𝑄 cannot ‘wait’ to apply to the 
result of 𝑃(𝑥). Second, it is not possible to get the effect of bleeding, in this case because 𝑄 cannot ‘wait’ 
to not apply to the result of 𝑃(𝑥). Thus counterfeeding and counterbleeding are the only interaction types 
that can be modeled with direct mapping, and any cases appearing to require feeding or bleeding must be 

 
6 This presumes that 𝑤 ≠ 𝑧; otherwise, 𝑃 and 𝑄 are in a (non-opaque) MUTUAL BLEEDING relationship; see Section 3. 
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analyzed otherwise.7 These are ways in which direct mapping is less expressive than serial ordering, but 
there is at least one way where it is more expressive. When two processes stand in the relation of mutual 
bleeding, serial ordering can only result in one of them applying, but direct mapping causes both of them 
to apply. A specific example will be provided in footnote 9. 

Actual rule-based alternatives to SPE often retain some measure of serial ordering. For example, work 
under the rubric of the “Universal Rule Application Hypothesis” (e.g. Koutsoudas et al. 1974) aims to 
discover universal principles that determine how a given pair of rules is to apply to all forms in the language, 
thus making any order between them ‘intrinsic’ as opposed to ‘extrinsic’. Anderson (1969, 1974, 1975) 
develops a “local ordering” approach, whereby the order of any given pair of rules is in part determined by 
properties of the input, such that the order between two rules with respect to one input might differ from 
their order with respect to another. 

It is worth noting that the full SPE model includes two additional mechanisms affecting interactions be-
tween processes, beyond serial ordering. One is the cycle, which is sensitive to the morphosyntactic brack-
eting of the string that is input to the phonological grammar. The entire grammar (or a portion thereof) is 
first applied to the innermost bracketed substring(s), then those innermost brackets are erased and the gram-
mar is applied to the next innermost bracketed substring(s), and so on until the outermost brackets are 
reached. Each pass of the grammar in this fashion is referred to as a ‘cycle’. This mechanism results in 
certain well-defined situations where one process 𝑃 might crucially precede another process 𝑄 within a 
cycle but also crucially follow 𝑄 across cycles. 

The other additional mechanism of process interaction in SPE is known as DISJUNCTIVE APPLICATION, 
which in SPE was generally attributed to special properties of certain notational devices (such as parenthe-
ses and angled brackets; see footnote 2). If two rules 𝑃, 𝑄 apply disjunctively to an input 𝑥, one rule (say, 
𝑃) is privileged such that if 𝑃 applies to 𝑥, 𝑄 is blocked from applying to 𝑥 and to any other representation 
arising from 𝑥 in the overall derivation of the form. A more general principle of disjunctive application was 
later formulated, first by Anderson (1969) and in more lasting form by Kiparsky (1973), motivated by 
examples where SPE’s notational devices fell short: this is known as the Elsewhere Condition, to be dis-
cussed further in Section 5.1. 

There is no direct analogue of a ‘process’ in OT and related constraint-based theories, and so grammars 
within these theories do not fit into this discussion in an obvious way. Nevertheless, there is a vast literature 
aiming to clarify the ways in which OT differs from SPE in terms of the interaction types (broadly con-
strued) that each predicts, and/or of attempts to modify the most basic architecture of OT or of SPE to 
accommodate attested interaction types that pose a challenge to it. Much of this literature focuses on the 
fact that opaque interactions are a challenge for OT (cf. Baković 2011), and attributes this challenge to the 
non-serial nature of the theory. Pruitt (2023) demonstrates that the attribution to (non-)serialism is wrong, 
pointing out that (if anything) it is the transparent interactions that require serial ordering — this is why 
direct mapping is able to describe only the opaque ones. A better diagnosis is that, under some reasonable 
assumptions about constraints, input-output maps in OT are OUTPUT-DRIVEN (Tesar 2014:83ff) — a formal 
property whose empirical consequences are closely aligned with transparency, as we discuss in Section 4.2. 

 
7 This property of direct mapping thus serves as the basis of a formal diagnostic for opacity, on which see Section 4.1. 
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3 Interactions 
A more precise and complete handle on the universe of process interactions predicted by serial ordering is 
provided in Baković & Blumenfeld (2023). Here we highlight the main idea of that work, omitting much 
detail and complexity. One simplification we will make is to consider only strings to which any given 
process may apply at most once (recall footnote 3). With that simplification, for any process 𝑃 it is possible 
to talk about its INPUT SET, 𝐼(𝑃): the set of all strings to which 𝑃 applies non-vacuously, those strings that 
are “subject to” 𝑃 as defined previously. It is also possible to define the OUTPUT SET, 𝑂(𝑃): the set of strings 
with a non-vacuous 𝑃-input. Work on the classical typology in (2), in all its variety, has only focused on 
how one rule potentially affects the input set of another rule. The main idea of Baković & Blumenfeld 
(2023) is that in order to glean the full typology one must also give due to how one rule potentially affects 
the output set of another rule. This move not only yields a more complete typology of interactions, but also 
illuminates the notion of opacity. 

To appreciate the utility of this approach, consider two apparent cases of feeding. Our examples are hypo-
thetical for consistency, sacrificing some degree of phonetic realism to achieve parallelism across all of the 
examples.8 The rules are given both featurally and segmentally, for clarity, assuming the segmental inven-
tory {k, c, i, e}, with the feature [±back] distinguishing the consonants and [±high] the vowels, which are 
assumed to be [–back]. This minimal inventory allows us to write rules in a simple way, e.g. “V → [–high]” 
specifies the mapping {i ↦ e}.  

In the first case (3), a velar palatalization process 𝑃 applies before all front vowels; a high vowel lowering 
process 𝑄 then applies after palatals. Clearly 𝑃 feeds 𝑄: ki ↦ ci ↦ ce. If the order is ⟨𝑃 ⪧ 𝑄⟩, this is a 
feeding interaction; under the opposite order ⟨𝑄 ⪧ 𝑃⟩, it is counterfeeding: ci ↦ ce and ki ↦ ci. 

(3) Case 1: velar palatalization (𝑃) interacts with high vowel lowering (𝑄) 

𝑃: C → [–back] / ＿ [V, –back] k → c / ＿ {i,e} 

𝑄: V → [–high] / [C, –back] ＿ i → e / c ＿ 

The second case (4) is identical to the first except that palatalization only applies before the high front 
vowel. 

(4) Case 2: velar palatalization (𝑃) interacts with high vowel lowering (𝑄) 
𝑃: C → [–back] / ＿ [V, +high, –back] k → c /＿ i 

𝑄: V → [–high] / [C, –back] ＿ i → e / c ＿ 

 
8 We may be criticized for using simple hypothetical examples to illustrate interactions, a habit we maintain below in 
Section 4.1 when discussing opacity using the same strings, along with an equally simple hypothetical stress rule. One 
basis for such a criticism might be a general notion that it is good for linguists to “engage with data”. That is of course 
true, but attention to data does not preclude attention to other things. A more substantive reason to ask for “real” 
examples might be the fear that simple hypothetical examples are of insufficient complexity to illustrate the entire set 
of possibilities. We believe, on the contrary, that idealization is necessary when the goal is to enumerate an inventory 
of formal possibilities rather than some “holistic” analysis. Every “real” example is formally indistinguishable from 
one of our simple hypothetical examples in relevant respects, i.e. in how one process affects the input and output set 
of another process. 
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Again there is apparent feeding under the ⟨𝑃 ⪧ 𝑄⟩ order, ki ↦ ci ↦ ce, and apparent counterfeeding under 
the opposite order ⟨𝑄 ⪧ 𝑃⟩, in the same way as in Case 1: ci ↦ ce, ki ↦ ci. 

And yet, there is something subtly different about these two examples. In Case 1, the feeding interaction is 
transparent: the output form ce has undergone both palatalization and lowering, and the conditions moti-
vating the application of both rules are present in this surface form. In Case 2, on the other hand, the feeding 
interaction is opaque: the same output form ce shows the application of palatalization, but the added [+high] 
condition for its application is not present in that output — the effect of palatalization is disguised by the 
subsequent application of lowering. This is overapplication, much as in the case of counterbleeding. 

This feeding with overapplication opacity is puzzling from the classical perspective. The problem stems 
from the fact that the classical approach asks only if and how 𝑃 affects the input set of 𝑄. Does 𝑃 create 
new members of 𝐼(𝑄)? If so, there is feeding. Does 𝑃 destroy members of 𝐼(𝑄)? If so, there is bleeding. But 
asking questions about input sets alone does not help to distinguish Case 1 from Case 2. Indeed, in both 
cases 𝐼(𝑄) contains the string ci, and in both cases palatalization (𝑃) creates new instances of such strings. 
Yet, one case is transparent and the other is opaque, and that difference must be due to the broader context 
of application of palatalization in Case 1, i.e. the fact that Case 1 includes a (potential) mapping ke ↦ ce 
while Case 2 does not. To understand this difference, one must also ask if and how 𝑃 affects the output set 
of 𝑄. Does 𝑃 create new members of 𝑂(𝑄), or does it destroy them? This is where our two cases differ. The 
set 𝑂(𝑄) contains the string ce. In Case 1, 𝑃 creates new instances of such strings, from ke. In Case 2, no 
string ce is created by 𝑃. 

Let us call situations where 𝑃 creates members of 𝐼(𝑄) INPUT PROVISION — 𝑃 input-provides 𝑄 — and 
situations where 𝑃 destroys members of 𝐼(𝑄) INPUT REMOVAL — 𝑃 input-removes 𝑄. Likewise for the 
effect of 𝑃 on members of 𝑂(𝑄), we will refer to OUTPUT PROVISION and OUTPUT REMOVAL. In shorthand 
notation, we will write “+i” for input provision, “–i” for input removal, and mutatis mutandis for “+o”, 
“–o”: 𝑃+i𝑄, 𝑃–i𝑄, 𝑃+o𝑄, and 𝑃–o𝑄. More careful definitions are given in (5). We will refer to these basic 
elements of an interaction as ‘atoms’, for reasons that will become clearer below. 

(5) a. Input provision. 𝑃+i𝑄 iff ∃𝑥 such that 𝑥 ∉ 𝐼(𝑄) and 𝑃(𝑥) ∈ 𝐼(𝑄). 
b. Input removal. 𝑃–i𝑄 iff ∃𝑥 such that 𝑥 ∈ 𝐼(𝑄) and 𝑃(𝑥) ∉ 𝐼(𝑄). 
c. Output provision. 𝑃+o𝑄 iff ∃𝑥 such that 𝑥 ∉ 𝑂(𝑄) and 𝑃(𝑥) ∈ 𝑂(𝑄). 
d. Output removal. 𝑃–o𝑄 iff ∃𝑥 such that 𝑥 ∈ 𝑂(𝑄) and 𝑃(𝑥) ∉ 𝑂(𝑄). 

Observe that the feeding example (Case 1 above) involves two of these atoms: 𝑃+i𝑄, 𝑃+o𝑄. Case 2, in 
contrast, only involves 𝑃+i𝑄 but not 𝑃+o𝑄. We will see below that Case 2 involves another atom. For 
completeness, let us now introduce Case 3, to illustrate bleeding. It is just like Case 1, but with a different 
environment for 𝑄. 

(6) Case 3: velar palatalization (𝑃) interacts with high vowel lowering (𝑄) 

𝑃: C → [–back] / ＿ [V, –back] k → c / ＿ {i,e} 

𝑄: V → [–high] / [C, +back] ＿ i → e / k ＿ 

To examine the atoms contained in the interactions exemplified by these three cases, we use arrow diagrams 
illustrating the configurations of mappings affecting relevant strings (7). In our toy examples, there are four 
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such strings to be considered: {ki, ci, ke, ce}. We will place these strings in the diagrams in such a way that 
the mappings effected by 𝑃 in each case are displayed horizontally while those effected by 𝑄 in each case 
are displayed vertically. Cases 1 and 3 instantiate feeding and bleeding, respectively. Following Baković & 
Blumenfeld (2023), we will refer to the situation in Case 2 as SEEDING.9 

(7) Case 1: feeding Case 2: seeding Case 3: bleeding 
 ki → ci ki → ci ki → ci 
   ↓   ↓ ↓ 
 ke → ce ke  ce ke → ce 

Focusing on Case 3, observe that, as expected, 𝑃–i𝑄: the string ki is an input to 𝑄, but 𝑃(ki) = ci is not. But 
this is not the only atom involved here: there is also 𝑃–o𝑄: ke is a possible 𝑄-output, but 𝑃(ke) = ce is not. 

More generally, for an atom to be present in such a diagram, there must exist an arrow with no other arrow 
parallel to it. This is the case with all three vertical 𝑄-arrows in the diagrams in (7). If that 𝑄-arrow lacks a 
parallel arrow to the left, as in Cases 1 and 2, we are dealing with provision, of inputs or outputs or both. If 
it lacks a corresponding arrow to the right, as in Case 3, we are dealing with removal, of inputs or outputs 
or both. Looking at Case 2, seeding, we see that 𝑃’s arrow also lacks a parallel arrow at the bottom of the 
diagram. This indicates the presence of another atom besides 𝑃+i𝑄: in this case, 𝑄–o𝑃. Specifically, 𝑄 takes 
the string ci, which is in the output set of 𝑃, and produces the string ce which is not in that set. Summarizing: 

(8) a. Feeding. 𝑃 feeds 𝑄 iff 𝑃+i𝑄 and 𝑃+o𝑄. 
b. Seeding. 𝑃 seeds 𝑄 iff 𝑃+i𝑄 and 𝑄–o𝑃. 
c. Bleeding. 𝑃 bleeds 𝑄 iff 𝑃–i𝑄 and 𝑃–o𝑄. 

The atomic metaphor should now become clear. The basic provision (e.g. 𝑃+i𝑄) and removal (e.g. 𝑃–o𝑄) 
properties are atoms which are found in various combinations in observed phenomena; interactions like 
feeding, seeding, and bleeding are ‘molecules’ containing different combinations (specifically, pairs) of 
atoms. 

These three interactions do not exhaust the space of molecular possibilities. There are two more topologi-
cally distinct configurations, illustrated diagrammatically below. (A sixth case, with ki ↦ ke ↦ ce, is topo-
logically identical to Case 2; it instantiates seeding, but with the arbitrary roles of 𝑃 and 𝑄 reversed: 𝑄+i𝑃, 
𝑃–o𝑄.) In Case 4, MUTUAL BLEEDING, the palatalization rule 𝑃 is identical to that in Case 2 and the lowering 
rule 𝑄 is identical to that in Case 3.10 In Case 5, MERGER, 𝑃 applies only before the mid front vowel e and 
𝑄 is identical to the lowering rule in Case 2.11 

 
9 Seeding is referred to as ‘opaque feeding’ in Lee (1999, 2007) and as ‘self-destructive feeding’ in Baković (2007, 
2011). 
10 Note that simultaneous application in the case of mutual bleeding would result in the output ce, with both rules 
applying to the same input form ki. This result is impossible to achieve when the rules are ordered serially, illustrating 
one way in which simultaneous application is more expressive than serial ordering (Vago 1977, Wolf 2011). 
11 Merger is not an interaction in the sense that, unlike feeding, (mutual) bleeding, and seeding, for merger the 
composition of 𝑃 and 𝑄 is commutative, i.e. the order of application does not matter: 𝑃(𝑄(x)) = 𝑄(𝑃(x)) for all 𝑥. Order 
of application matters under at least one of two topological conditions: when two arrows originate in one string, as in 
(mutual) bleeding, or when one arrow ends on a string where another arrow begins, as in feeding, seeding, and 
bleeding. Merger is the only structure that meets neither of these conditions. 
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(9) Case 4: mutual bleeding Case 5: merger 
 ki → ci ki  ci 
 ↓     ↓ 
 ke  ce ke → ce 

The atoms in Case 4, mutual bleeding, are 𝑃–i𝑄 and 𝑄–i𝑃. The atoms in Case 5, merger, are 𝑃+o𝑄 and 
𝑄+o𝑃. There are further interactional possibilities in this more complete typology, but they would require 
us to expand our hypothetical examples beyond mappings between members of the four strings 
{ki, ci, ke, ce}. We refer the reader to Baković & Blumenfeld (2023) for a complete treatment. The above 
discussion, however, is sufficient to make clear one significant consequence of the atomic approach: it 
offers a formal (and complete) handle on opacity. This will be the subject of Section 4.1. 

4 Zooming out 
The previous section established a basic inventory of abstract atomic elements generating the typology of 
interactions between two processes — that is, local interactions. In this section we take a step back to 
consider interactions from a more global, grammar-level perspective. 

Any theory that describes phonological systems using at least two levels (input and output) raises a basic 
question concerning the locus of significant generalizations about phonology. To what extent do surface 
forms reveal linguistically significant generalizations? The general intuition that phonological mappings 
are motivated by restrictions on outputs has been called SURFACE ORIENTEDNESS (Tesar 2014:1). While 
individual processes may be surface-oriented in some way, the issue becomes a complex one when inter-
action is considered: one process may affect the surface orientation of another process. In this section we 
examine the consequences of interaction for surface orientedness from two distinct angles: opacity and 
output-drivenness. 

Presence or lack of motivation for a process in surface structures can be made precise in many ways. The 
approach that has received the most attention in this context is opacity (and its converse, transparency). In 
the early days of generative grammar, opacity figured in discussions of language change in the generative 
framework (Kiparsky 1971). More recently, because OT encounters difficulties in accommodating classical 
opaque generalizations, many have critiqued the theory on these grounds (e.g. Idsardi 2000, Vaux 2008), 
attempted to dispute the existence of opacity (e.g. Sanders 2003, Green 2007), or proposed modifications 
of OT to accommodate it (e.g. McCarthy 1999, 2003, 2007). In Section 4.1, we focus on the formal prop-
erties of opacity as illuminated by our atomic approach to interactions more generally. 

A similar and formally well-understood concept is OUTPUT-DRIVENNESS (Tesar 2014, Magri 2018a,b), a 
surface-oriented property of the overall grammar taken as an input-output map. While applicable to any 
theory mapping inputs to outputs, output-drivenness has received attention mostly in the context of con-
straint-based theories like OT. In Section 4.2 we discuss the connections between output-drivenness, opac-
ity, and our atomic approach to interactions, showing that output-drivenness is a more stringent requirement 
than transparency. 
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4.1 Opacity 
Opacity has received numerous semi-formal characterizations in the literature. The most basic, originally 
due to Kiparsky (1971, 1976), defines opacity as two disjoint sets of situations where surface forms do not 
show the expected effects of the application of a process.12 (Recall that ‘𝐴⊌𝑏’ notates priority union: a 
feature matrix identical to 𝐴 except that the feature-value pairs of 𝑏 are substituted or added.) 

(10) A process 𝑃 of the form 𝐴 → 𝑏 / 𝐶 ＿ 𝐷 is OPAQUE to the extent that 

a. there are surface instances of 𝐴 in the environment 𝐶 ＿ 𝐷 that are subject to 𝑃;13 

b. there are surface instances 𝐴⊌𝑏 derived by 𝑃 in an environment other than 𝐶 ＿ 𝐷. 

Clause (10a) describes underapplication, where there are output strings that are subject to 𝑃 but to which 𝑃 
has failed to apply. Clause (10b) describes overapplication, where there are output strings that have non-
vacuously undergone 𝑃 despite not showing the necessary conditions for the application of 𝑃. As noted in 
Section 2, counterfeeding orders result in underapplication, and counterbleeding orders result in overappli-
cation. 

To see how opacity emerges from the nature of the atoms, let us first examine the opacity facts in the 
hypothetical delimited universe of four strings {ki, ci, ke, ce} and the five molecular interactions summa-
rized in Section 3. The table in (11) lists those interactions along with observations about their opacity. 
Mutual bleeding and merger are transparent no matter what the order between 𝑃 and 𝑄. ‘𝑃 feeds 𝑄’ and 
‘𝑃 bleeds 𝑄’ are opaque under the order ⟨𝑄 ⪧ 𝑃⟩, with underapplication and overapplication of 𝑄, respec-
tively. ‘𝑃 seeds 𝑄’ is opaque in both directions: there is underapplication of 𝑄 when ⟨𝑄 ⪧ 𝑃⟩ and there is 
overapplication of 𝑃 when ⟨𝑃 ⪧ 𝑄⟩. 

(11) Atomic classification of molecular interactions and opacity 

Molecules ⟨𝑃 ⪧ 𝑄⟩ ⟨𝑄 ⪧ 𝑃⟩ Atoms 

feeding transparent 𝑄: i → e / c ＿ 
 underapplies in ki ↦ ci 

𝑃+i𝑄, 𝑃+o𝑄 

seeding 𝑃: k → c / ＿ i 
overapplies in ki ↦ ci ↦ ce 

𝑄: i → e / c ＿ 
underapplies in ki ↦ ci 

𝑃+i𝑄, 𝑄–o𝑃 

bleeding transparent 𝑄:  i → e / k ＿ 
overapplies in ki ↦ ke ↦ ce 

𝑃–i𝑄, 𝑃–o𝑄 

mutual bleeding transparent transparent 𝑃–i𝑄, 𝑄–i𝑃 

merger transparent transparent 𝑃+o𝑄, 𝑄+o𝑃 

 
12 Kiparsky (1976) addresses deficiencies noted by Kaye (1974) in Kiparsky’s original 1971 definition of opacity. 
13 We add “that are subject to 𝑃” to this first clause because the string 𝐶𝐴𝐷 matching the structural description of a 
process of the form 𝐴 → 𝑏 / 𝐶 ＿ 𝐷 can just as well be a vacuous input to — and thus not subject to — 𝑃. Consider 
for example final devoicing, typically written [–sonorant] → [–voice] / ＿ #. Both strings with voiced final obstruents 
and strings with voiceless final obstruents match the structural description of this process, but only voiced final 
obstruents are subject to it. 
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The atoms responsible for each type of opacity are underlined for clarity in each case. The two cases of 
underapplication of 𝑄 are those where 𝑃+i𝑄 and ⟨𝑄 ⪧ 𝑃⟩ — that is, where 𝑃 counterfeeds or counterseeds 
𝑄. The atom responsible for overapplication is output-removal. There is one case in each direction: in the 
case of bleeding, 𝑃–o𝑄 and 𝑄 overapplies when ⟨𝑄 ⪧ 𝑃⟩ — that is, when 𝑃 counterbleeds 𝑄 — while in 
the case of seeding, 𝑄–o𝑃 and 𝑃 overapplies when ⟨𝑃 ⪧ 𝑄⟩ — that is, when 𝑃 seeds 𝑄. 

This leads to the following general characterization of opacity under our atomic approach. 

(12) Atomic opacity: given two processes 𝑋, 𝑌, 
a. 𝑌 underapplies if 𝑋+i𝑌 and ⟨𝑌 ⪧ 𝑋⟩, and 
b. 𝑌 overapplies if 𝑋–o𝑌 and ⟨𝑌 ⪧ 𝑋⟩. 

Underapplication obtains when a process 𝑋 creates inputs for another process 𝑌, but those inputs fail to 
undergo 𝑌 because 𝑌 is ordered before 𝑋. Overapplication obtains when 𝑌 applies to a string, but then 𝑋 
affects that output in such a way that the result is no longer in the output set of 𝑌 — to put it another way, 
there is overapplication when a form has undergone a process but does not ultimately appear to be an output 
of it. 

There are other opaque interactions which are neither underapplication nor overapplication for which this 
atomic approach provides a formal treatment. One is exemplified by interactions between stress, which may 
be sensitive to syllable position or weight, and processes disrupting syllable position or weight. The fol-
lowing hypothetical example is due to Rasin (2022), who proposes the term SHIFTING to refer to this type 
of interaction.14 

(13) a. 𝑃: V → Ø / ＿ # (apocope) 

b. 𝑄: σ → σ́ / ＿ σ # (penultimate stress) 

The shifting order ⟨𝑃 ⪧ 𝑄⟩ is transparent: badupi ↦ badup ↦ bádup. Opacity arises under the countershift-
ing order, 〈𝑄 ⪧ 𝑃〉: badupi ↦ badúpi ↦ badúp. This output unexpectedly exhibits stress on the final sylla-
ble, rather than on the penult as 𝑄 requires. This example is correctly identified as opaque in our atomic 
approach. The appropriately stressed input to apocope, badúpi, is a member of the output set 𝑂(𝑄) of pe-
nultimate stress, but after apocope applies, the form badúp is no longer a member of 𝑂(𝑄). In other words, 
there is output-removal: 𝑃–o𝑄, and because 𝑄 is ordered first, it is diagnosed as overapplication opacity 
according to (12b). 

But the phenomenon here is distinct from counterbleeding and seeding, because penultimate stress doesn’t 
exactly “overapply” in the way that a counterbled or seeded process does. The general situation resulting 
from opaque output removal is that there are surface forms to which a process appears to have applied in 
an unexpected way. For seeding and counterbleeding, the expected alternative is non-application. In the 
seeding case in (4), for example, palatalization overapplies in the derivation ki ↦ ci ↦ ce because palatali-
zation has applied even though the expected alternative in the surface environment (＿ e) would have been 
for it not to have applied. Similarly in the counterbleeding case in (6): lowering overapplies in the derivation 

 
14 Baković & Blumenfeld (2023) follow Zwicky (1987), following unpublished work by Don Churma, in using the 
term transfusion for this type of interaction. We use Rasin’s term instead here, as it is more amenable to the “counter” 
prefix. 
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ki ↦ ke ↦ ce, because lowering has applied even though the expected alternative in the surface environment 
(c ＿) would have been for it not to have applied. For countershifting, on the other hand, the expected 
alternative is application in a different locus. This is the case in (13), with the derivation badupi ↦ badúpi 
↦ badúp. We thus refer to countershifting interactions as cases of MISAPPLICATION rather than overappli-
cation. Both of these types of opacity share the fact that a process has applied in an unexpected way, but 
differ in what the expected alternative would be: non-application in the case of overapplication, and appli-
cation somewhere else in the case of misapplication. In sum, output removal is the atom responsible for 
misapplication as well as overapplication. Which of these two phenomena are observed in any given case 
results from properties of the processes involved that are orthogonal to the atoms we have been discussing. 

Joshi & Kiparsky (1979, 2006) and Kiparsky (1982a, 2015) attempt to unify the disjoint definition of opac-
ity into a single diagnostic, inspired by Pāṇini, which we call the Simultaneous Application Condition 
(SAC). Using “𝑃,𝑄(𝑥)” to denote the effect of applying 𝑃 and 𝑄 simultaneously to 𝑥 (recall the discussion 
of direct mapping / simultaneous application in Section 2), the SAC diagnoses a process as opaque as fol-
lows. 

(14) Simultaneous Application Condition (SAC) 
𝑄 is opaque if there exists an input 𝑥 such that 𝑃(Q(𝑥)) = 𝑃,𝑄(𝑥) ≠ Q(𝑃(𝑥)). 

As noted in Section 2, the only interactions that are possible under simultaneous application are opaque 
counterfeeding and counterbleeding because simultaneous application does not permit 𝑄 to make use of 
any changes effected by 𝑃. This is in fact the basis of the SAC as stated. The SAC has broader coverage 
than the original disjoint definition of opacity in (10), in that it covers misapplication-type opacity as well. 
However, it is still not fully adequate; see Baković & Blumenfeld (2023) for discussion. It suffices to ob-
serve here that because it is asymmetrical, the SAC cannot handle a situation where both orders are opaque, 
as is the case with seeding. 

4.2 Output-drivenness 
Opacity is a property of an individual process vis-à-vis the grammar of which it is part. A related but distinct 
concept known as output-drivenness applies at the global level of the grammar (Tesar 2014). It is a property 
that holds of phonological grammars taken as input-output maps, and is independent of a particular analysis 
of that map (constraints vs. rules, specific choices of constraints or rules, etc.). Defining this concept re-
quires the following minimal assumptions: a set of representations with a partial order defined on them 
reflecting some measure of similarity, and a grammar 𝒢 that maps input representations to output represen-
tations. Tesar (2014:26ff) proposes a precisely formalized process for evaluating similarity between pairs 
of forms, by comparing sets of DISPARITIES between them. For our purposes we can conceive of similarity 
as a measure of featural differences between forms. In particular, if the set of featural differences between 
segments 𝑥 and 𝑦 is a subset of the set of featural differences between 𝑥 and 𝑧, then 𝑦 is more similar to 𝑥 
than 𝑧 is to 𝑥. 

Informally, a grammar 𝒢 is output-driven if for every input-output mapping /in/ ↦ [out], any form that is 
more similar to [out] than /in/ is also maps to [out]. “[I]f a given input is mapped to an output, then any 
other input which has greater similarity to that output must also be mapped to that output” (Tesar 2014:21). 
One immediate consequence is that an output-driven grammar 𝒢 is IDEMPOTENT: every possible output of 
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𝒢 should map to itself if used as an input to 𝒢, because a form is always more similar to itself than it is to 
any other form. Another consequence is that 𝒢 does not contain SALTATIONS: mappings from input to output 
that ‘skip over’ a form that is more similar to the output than the input is.15 For example, in an output-driven 
map, the mapping /a/ ↦ [i] entails the mapping /e/ ↦ [i], because the featural differences between e and i 
(= {[±high]}) are a (proper) subset of the featural differences between a and i (= {[±high], [±low]}). 

Output-drivenness is a distinct notion from process opacity (Tesar 2014:37), but the two are intimately 
connected. First, we consider the conditions under which SPE-style rules define output-driven maps. Then 
we examine the connection between opacity and output-drivenness in the interaction of processes.  

Suppose map 𝑀 is defined by 𝐴 → 𝑏 / 𝐶 ＿ 𝐷, where 𝐴, 𝐶, 𝐷 are classes of segments, and 𝑏 is a set of 
feature values to be changed in 𝐴. There are some sufficient conditions on the output-drivenness of 𝑀. First, 
if 𝑏 contains a single feature-value pair — that is, if 𝑀 respects the single change condition in (1a) — then 
𝑀 is output-driven. Indeed, for any mapping 𝑝 ↦ 𝑞, if there is a single feature disparity between 𝑝 and 𝑞, 
there are by definition no forms that are intermediate in the number of disparities between 𝑝 and 𝑞. 

Note that the foregoing presupposes a fully explicit statement of the feature changes effected by 𝑀. So, the 
map {a ↦ i; e ↦ i} cannot be due to a process making a single feature change. A rule stated in the form 
V → [+high] is either incoherent, because whether it applies to /a/ cannot be determined, or it simply does 
not apply to /a/. Instead, the map {a ↦ i; e ↦ i} must be described with two feature changes, 
V → [+high, –low].16 

Many reasonable analyses involve processes like this one that change more than one feature at a time. For 
such processes, there is a more complex sufficient condition on output-drivenness. If 𝑏 contains more than 
one feature-value pair, the resulting map 𝑀 is output-driven if 𝐴 does not contain a feature-value pair that 
opposes one of the feature-value pairs contained in 𝑏. Suppose that 𝑏 = [α₁F₁, ..., αₙFₙ]. Then a segment 𝑝 
containing [–α₁F₁, ..., –αₙFₙ] would map to segment 𝑞 containing [α₁F₁, ..., αₙFₙ]. Now suppose that 𝐴 men-
tions [–αᵢFᵢ]. Then 𝑀 would exclude a segment 𝑟 identical to 𝑝 except for [αᵢFᵢ] in place of [–αᵢFᵢ]. However, 
this segment 𝑟 is more similar to 𝑞 than 𝑝 is to 𝑞, and thus 𝑀 must also map it to 𝑞 if 𝑀 is output-driven. 
Thus, if 𝑟 exists, 𝑀 is not output-driven. For example, V → [+high, –low] is output-driven, but 
[V, +low] → [+high, –low] is not: the latter contains the mapping {a ↦ i} but not the mapping {e ↦ i} — 
that is, it contains a saltation.17 

While it is possible to ask whether a given process defines an output-driven map, we reiterate that output-
drivenness is not a property of processes nor of any particular analysis of a map, but instead that it is a more 

 
15 The term ‘saltation’ is due to Hayes & White (2015), in reference to specific cases where one type of segment maps 
to another, apparently ‘jumping over’ another type of segment between them, similarity-wise. As we’ll see below, the 
same term can also be fruitfully used to characterize opaque interactions involving output removal. 
16 Note that evidence for a map like {a ↦ i; e ↦ i} does not necessarily entail abandoning the single change condition 
on processes because the map can be broken down into two processes, each making a single feature change and one 
feeding the other. There are two ways to accomplish this. One way is for the first process to be V → [–low], changing 
a to e, which feeds the second process, [V, –low] → [+high], changing e (whether underlying or itself from a) to i. 
Another way is for the first process to be V → [+high] and to assume that it is allowed to apply to a, temporarily 
resulting in an articulatorily impossible [+high, +low] vowel; this then feeds a second process that dispenses with the 
impossible, [V, +high] → [–low]. 
17 Note that the condition given in the text is sufficient, but not always necessary. For example, [V, –high] → [+high, 
–low] is still output-driven, assuming that [+high, +low] segments are impossible. 
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theory-neutral notion that holds of any map as long as a partial order based on similarity is defined on the 
strings over which the map operates. It is thus possible to ask not only whether a given process (qua SPE-
style rewrite rule) defines an output-driven map, but also whether compositions (= serial orderings) of such 
processes do. In particular, we are interested in how output-drivenness of compositions of processes relates 
to their opacity. The following table shows the cross-classification of output-drivenness and opacity of the 
composition 〈𝑃 ⪧ 𝑄〉. 

(15) Output-drivenness and opacity of compositions of output-driven 𝑃 and 𝑄 

 Transparent Opaque 

Output-driven yes no 

Non-output-driven yes yes 

Transparent output-driven compositions are of course possible, trivially, when 𝑃 and 𝑄 do not interact. 
Otherwise, the relationship between the two concepts is one of stringency: every opaque composition is 
non-output-driven, but some non-output-driven compositions may be transparent. The following example 
illustrates the latter point. 𝑃 raises all [–back] vowels to i, and 𝑄 backs the mid vowel e. If 〈𝑄 ⪧ 𝑃〉, the 
composed map is effectively saltatory: while a maps to i, the mid vowel e, which is more similar to i than 
a is, maps to ɤ. 

(16) Vowel raising (𝑃) interacts with mid vowel centralization (𝑄) 
𝑃: [V, –back] → [+high, –low]  {a ↦ i; e ↦ i} 
𝑄: [–high, –low] → [+back] {e ↦ ɤ} 

Still, this interaction is transparent: 𝑃 and 𝑄 mutually bleed each other on the input e. Regardless of the 
order between 𝑃 and 𝑄, there is no output that is subject to either process (that is, no underapplication) and 
no output that has mysteriously undergone either process (no overapplication or misapplication).  

Conversely, all opaque compositions of two processes are non-output-driven (see Magri 2018a for a more 
detailed discussion of the topic of this section). Recall that opacity has two atomic sources: input provision 
and output removal. All cases of input-provision opacity — where 𝑃 counterfeeds or counterseeds 𝑄 — 
involve underapplication, i.e. a situation where a potential input to 𝑄 does not undergo 𝑄. This situation is 
inevitably non-idempotent: there are forms which, if underlying, undergo 𝑃, but the same forms, when 
derived, map to themselves. Therefore the composed map is not output-driven. In fact, the non-output-
drivenness of 〈𝑄 ⪧ 𝑃〉 if 𝑃+i𝑄 holds regardless of the output-drivenness of 𝑃 and 𝑄 individually. 

The case of output-removal opacity — 𝑃–o𝑄 and 〈𝑄 ⪧ 𝑃〉 — is more complex but it is also true that such 
compositions are not output-driven. To help manage the complexity, we introduce a new schematic notation 
to keep track of changes effected by 𝑃 and 𝑄. Suppose, first, that 𝑃 and 𝑄 each changes the value of a 
distinct single feature; these features could be on the same segment or on different segments. Let us use “0” 
and “1” to refer to the feature values, and linear position to refer to the features themselves: 𝑃’s feature on 
the left, 𝑄’s feature on the right. The schematic forms under consideration are thus “00”, “01”, “10”, “11”. 
This notation makes the similarity distance amongst the forms perspicuous, as can be appreciated by the 
diagram in (17), where wavy lines connect two forms that differ from each other by only one featural 
disparity. 
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(17)  00 〰 10 
  ⌇  ⌇ 
  01 〰 11 

One necessary condition for a map to be output-driven is as follows: if {00 ↦ 11}, then {10 ↦ 11} and 
{01 ↦ 11} as well, because both 01 and 10 are more similar to 11 than 00 is. 

Now suppose 𝑄–o𝑃. Then, minimally, the following two mappings must exist: 𝑃 = {00 ↦ 10}, 𝑄 = {10 ↦ 
11}, and furthermore, 11 must not be an output of 𝑃. (Whether 𝑄 also maps 00 to 01 is immaterial to 𝑄–o𝑃.) 

(18)   𝑃 
 00 → 10 
 ⌇  ↓ 𝑄 
 01 〰 11 

The diagram in (18) makes it clear that as long as 〈𝑃 ⪧ 𝑄〉, it is the case that {00 ↦ 11}. As noted above, 
for an output-driven map it must also be the case that {10 ↦ 11}, which indeed holds here, as well as {01 
↦ 11}, which does not, because that mapping is incompatible with 𝑄 output-removing 𝑃. Therefore, 𝑄–o𝑃 
entails that the order 〈𝑃 ⪧ 𝑄〉 is not output-driven in this scenario, because it contains a saltation: 00 maps 
to 11, but 01 does not. 

This argument does not depend on the difference between “0” and “1” being that of a single feature value. 
In fact, as long as 𝑃 and 𝑄 do not undo each other’s disparities, the set of disparities in the map {00 ↦  11} 
where both processes have applied is a strict superset of the sets of disparities in the strings {00 ↦ 10} and 
{00 ↦ 01} where at most only of the two processes has applied. 

To make this argument more concrete we invoke the countershifting example from Section 4.1, (13): the 
input badupi maps to the output badúp, with misapplication of penultimate stress due to the subsequent 
application of apocope. In (19) below, the first feature’s 0 value indicates absence of stress on the penulti-
mate vowel u, while 1 indicates presence of stress on that vowel. The second feature’s value reflects pres-
ence (0) or absence (1) of the final vowel i. There is indeed saltation here, just as in (18): the form badup 
(= 01) is more similar to the output badúp (= 11) than is the input badupi (= 00), but badup does not also 
map to badúp.18 

(19)   𝑃 
 00 → 10 
 badupi  badúpi 
 ⌇  ↓ 𝑄 
 01 〰 11 
 badup  badúp 

Assuming that input provision and output removal are the only atomic sources of opacity, this concludes 
the argument that all opaque compositions of two processes result in non-output-driven maps. Taking stock 

 
18 Recall that input badup in this example maps to a form outside of the square in (19): it maps to bádup, with 
penultimate stress on the a. Recall that this is one of the key ways in which countershifting differs from 
counterbleeding and seeding: in both of those cases, the relevant intermediate form maps to itself. 
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of this section, it is evident that in a specific sense output-drivenness is a more restrictive notion than opac-
ity: all map interactions that are opaque are non-output-driven, but the converse is not true. The non-output-
drivenness of map compositions holds under very weak assumptions about the nature of 𝑃 and 𝑄. 

Furthermore, these observations make it possible to attempt another unified definition of opacity, following 
Magri (2023:15), this time as a global property of a grammar rather than in the more usual way as a local 
property of a map embedded within a grammar. 

(20) Magri’s definition of opacity 
Grammar 𝒢 is opaque to the extent that there are maps 𝑥 ↦ 𝑧 such that there exists a phonotactically 
licit form 𝑦 that is intermediate between 𝑥 and 𝑧, and different from 𝑧. 

Essentially, this definition covers the input provision (underapplication) and output removal (overapplica-
tion) cases of non-output-drivenness. However, Magri’s definition cannot account for the opacity of coun-
tershifting — misapplication with output removal, as in (19) above — because there is no licit form (dif-
ferent from badúp) that is intermediate between badupi and badúp. The only form that could potentially fit 
the bill is bádup (from input badup), but this form is not intermediate between badupi and badúp: it differs 
from the first in terms of stress (á/a) and apocope (ø/i), and from the second in terms of stress in two 
different loci (á/a and u/ú). 

5 Blocking interactions 
In the preceding sections we have assumed that the only factor relevant to the application of a process 𝑃 to 
a string 𝑠 is set membership: if 𝑠 ∈ 𝐼(𝑃) and it’s 𝑃’s turn to apply in the course of the derivation, then 𝑃 
applies to 𝑠. Conversely, if it’s 𝑃’s turn to apply but it fails to apply to 𝑠, it must be because 𝑠 ∉ 𝐼(𝑃). 

Phonological theory has long recognized that there is yet another way that a process 𝑃 can be prevented 
from applying to a string to which 𝑃 is expected to apply because it is in 𝑃’s input set: 𝑃 can be BLOCKED, 
according to some non-ordering type of intervention, either by another process or by a constraint. Because 
such cases result in the surface realization of strings in the input set of 𝑃, they involve underapplication 
opacity in the sense defined in (10a) (Baković 2011). In order to accommodate them within the atomic 
approach in (12), we would have to add conditions beyond process ordering. This would take us too far 
afield here, so we simply proceed with some examples: two types of blocking by process in Sections 5.1 
and 5.2, and blocking by constraint in Section 5.3. 

5.1 Disjunctive application 
Thus far we have discussed interactions between processes 𝑃, 𝑄 that are sensitive to their order of applica-
tion: either ⟨𝑃 ⪧ 𝑄⟩ or ⟨𝑄 ⪧ 𝑃⟩. This type of application is referred to as CONJUNCTIVE in SPE: regardless 
of their order, both 𝑃 and 𝑄 get a crack at the derivation, though it may sometimes be too early or too late 
for one or the other to apply non-vacuously. As noted in Section 2, a different type of application referred 
to as DISJUNCTIVE was also entertained in SPE. In this type of case, either 𝑃 or 𝑄 gets a crack at the deri-
vation, but not both. We focus here on the type of example that could not be accommodated by SPE’s 
notational conventions and that motivated the introduction of a broader principle known as the Elsewhere 
Condition (Kiparsky 1973). 
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There are two types of example that are relevant to this discussion. One type is exemplified by the interac-
tion between two processes of English, referred to here simply as Shortening and Lengthening.19 Shortening 
generally shortens vowels in the heads of branching feet, and is responsible for alternations such as di(vīne) 
~ di(vĭni)ty, (nā)ture ~ (nătu)ral, ob(scēne) ~ ob(scĕni)ty, and so on. Lengthening more specifically length-
ens non-high vowels in the heads of branching feet when the non-head is high, front, and in hiatus, and is 
responsible for alternations such as (grădu)al ~ (grādi)ent and (remĕ)dy ~ re(mēdi)al. The question at hand 
is why Shortening, which is applicable in a strictly more general context than Lengthening is, does not 
apply in these latter cases. 

One possible answer is simply that Shortening precedes Lengthening: regardless of whether the relevant 
vowel is underlyingly long or short, the prior effect of Shortening is undone by the later effect of Length-
ening. This is most notable in the derivation of a form like (grādi)ent, which has an underlying long vowel 
(cf. grāde): after footing, the derivation proceeds as follows: (grādi)ent ↦ (grădi)ent ↦ (grādi)ent. This 
type of derivation, where one process applies only to be undone by another, has been called a DUKE OF 
YORK DERIVATION (Pullum 1976). 

Kiparsky (1973) proposes a different answer: Lengthening blocks Shortening, via disjunctive application 
by the Elsewhere Condition. Stated in our formal terms, the Elsewhere Condition requires that two pro-
cesses 𝑃 and 𝑄 apply disjunctively, with 𝑃 blocking 𝑄, iff (a) 𝐼(𝑃) is a proper subset of 𝐼(𝑄) and (b) 𝑂(𝑃) 
and 𝑂(𝑄) are disjoint. These two subconditions hold here, with 𝑃 = Lengthening and 𝑄 = Shortening: (a) 
the input set of Shortening (= the head of a branching foot) properly includes that of Lengthening (= the 
head of a branching foot meeting several additional conditions), and (b) the output sets of the two processes 
are disjoint: Shortening results in a short vowel in the head of the branching foot while Lengthening results 
in a long vowel in that same position. 

Given that there is a viable conjunctive analysis of this type of example, the question becomes why dis-
junctive application is necessary. One answer is that there is something suspicious about Duke of York 
derivations, either because these derivations involve ‘superfluous steps’ that are undesirable in principle 
(Halle & Idsardi 1997, 1998) or because there is (purportedly) no evidence for the fleeting intermediate 
step (Kiparsky 1973, McCarthy 2003b; see also Norton 2003). Whether or not this suspicion is valid, note 
that the Elsewhere Condition carves out only a subset of such potential derivations: those where the input 
set of one process properly includes that of the other. Duke of York derivations are still possible in cases 
where the output sets of two processes are disjoint but their input sets merely overlap as opposed to being 
in a proper inclusion relationship.20 

Another answer comes in the form of the second type of example that motivates the Elsewhere Condition, 
exemplified by the interaction of two processes of Diola Fogny (Sapir 1965). One process place-assimilates 
nasals to following stops (Assimilation), and the other process deletes pre-consonantal consonants (Dele-
tion). As in the English case, these processes meet the two subconditions of the Elsewhere Condition, with 

 
19 The most immediately relevant discussions of these rules and their disjunctive application are found in Kenstowicz 
(1994), Halle (1995), Prince (1997), and Baković (2013). The examples cited are purely orthographic, with alternating 
vowels in boldface type and the long/short distinction indicated with a macron (e.g. ā) or a breve (e.g. ă), respectively. 
20 This can be appreciated with an example from Nuuchahnulth, previously known as Nootka (Sapir & Swadesh 1939, 
Pullum 1976, McCarthy 1999, Kim 2003, Stonham & Kim 2008). Dorsals labialize after round vowels (/nuːk+iːs/ → 
[nuːkʷiːs] ‘canoe song’) and delabialize pre-consonantally (/ʦapχʷ+saːp/ → [ʦapχsaːp] ‘to boil’); in overlapping 
contexts, delabialization wins out: /mamuːk+ʃitɫ/ → mamuːkʷʃitɫ → [mamuːkʃitɫ] ‘work (perfective)’. 
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Assimilation as the more specific process 𝑃 and Deletion as the more general process 𝑄: (a) the input set 
of Deletion properly includes that of Assimilation, and (b) the output sets of the two processes are disjoint. 
Assimilation thus blocks Deletion: letkuʤaw ↦ lekuʤaw ‘they won’t go’,  but nigamgam ↦ nigaŋgam, 
*nigagam ‘I judge’. 

Because Deletion is technically applicable both to the input and to the output of Assimilation, a conjunctive 
alternative to this analysis must somehow ensure that Deletion only applies when Assimilation does not. 
One way to accomplish this is to have Deletion apply to (a) pre-consonantal non-nasals and (b) pre-contin-
uant nasals (Kiparsky 1973:97; Baković 2013:27). Another, more promising alternative is to make Assim-
ilation somehow bleed Deletion, a path pursued by Itô (1986): coda consonants are initially ‘unlicensed’, 
Assimilation ‘licenses’ coda nasals by place-linking them to following stops, and Deletion targets all and 
only unlicensed consonants. 

Note that there is an atomic difference between the two types of example discussed here. In the English 
case, Lengthening and Shortening both input-provide and output-remove each other — a type of ‘mutual 
seeding’ interaction more complex than any of the ones we’ve encountered thus far, with four atoms instead 
of just two. In the Diola Fogny case, Deletion both input-removes and output-removes Assimilation, which 
is like bleeding except that both orders result in Deletion deleting pre-consonantal nasals whether or not 
they have assimilated. The former type of case is tailor-made for a conjunctive Duke of York analysis, 
while the latter requires some modification of (the interpretation of) the processes to reverse the bleeding 
relationship between them. 

5.2 Nonderived environment blocking 
Kiparsky (1976) identifies another type of case in which a process is blocked from applying to a string in 
its input set. In Finnish, a process (Assibilation) changes t to s before i, but only if that i is introduced in the 
course of the derivation, either morphologically (e.g., a suffix beginning with i is attached to a stem ending 
in t; /halut+i/ → [halusi] ‘wanted’) or phonologically, the case of most immediate interest to us here. 

Another process raising word-final e to i successfully feeds Assibilation (/vete/ → veti → [vesi] ‘water’), 
but an otherwise comparable form in which the ti sequence is underlying (and tautomorphemic) fails to 
assibilate: /äiti/ → [äiti] ‘mother’. There is some kind of interaction between Raising and Assibilation here, 
but it isn’t due to serial ordering: we can say that Raising (precedes and) feeds Assibilation, but in that case 
Assibilation should also be applicable to an underlying ti sequence, not only when such a sequence results 
from Raising. 

This situation is often referred to as NONDERIVED ENVIRONMENT BLOCKING: Assibilation is only permitted 
to apply if its context of application has been derived by another process, or conversely is blocked from 
applying when its context has not been derived.21 Many proposals have been made to address the problem 
of nonderived environment blocking, too many to do justice to here, so again we refer our readers to another 
modest selection: Kiparsky (1976, 1982b, 1993), Mascaró (1976), Burzio (2000), Inkelas (2000), Łubowicz 

 
21 Note that this situation is roughly the inverse of counterfeeding. Here, Assibilation only applies to derived forms, 
not to underlying forms, whereas a counterfed process only applies to underlying forms, not to derived forms. The 
main difference is that counterfeeding is assumed to be determined on a case-by-case basis (𝑃 may be fed by 𝑄 but 
counterfed by 𝑅) whereas nonderived environment blocking is assumed to be all-or-nothing (𝑃 is blocked in all 
nonderived environments). 
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(2002), McCarthy (2003a), van Oostendorp (2007), Kula (2008), Wolf (2008), Rasin (2016, 2023), and 
Chandlee (2021). 

5.3 Blocking by constraint 
Processes can also be blocked from applying to strings in their input set by the intervention of 
CONSTRAINTS, which typically proscribe particular output structures or configurations.22 Kisseberth (1970) 
is the locus classicus of the argument that constraints curtailing the application of processes should be a 
part of phonological theory. In that work, and in much subsequent work in the primarily rule-based litera-
ture, a process 𝑃 is blocked from applying to a string 𝑥 by a constraint 𝐶 if 𝑃(𝑥) = 𝑦, 𝑦 ≠ 𝑥, and 𝑦 but not 𝑥 
violates the proscription of 𝐶. 

One area in which blocking by constraint has flourished as an explanatory device is in the analysis of vowel 
harmony; an influential albeit unpublished paper on this topic is Kiparsky (1981). Vowels that do not un-
dergo harmony (so-called ‘neutral’ vowels) are ones whose expected harmonic counterparts are proscribed 
by a constraint that is also held to be responsible for their absence from the underlying segmental inventory. 
The principle that processes do not output segments absent from the underlying inventory, known as 
STRUCTURE PRESERVATION, in this case acts as a constraint on the outputs of harmony.23 

The increasing invocation of constraints as descriptive and explanatory devices throughout the 1980s led 
to the development of more purely constraint-based theories, most significantly OT (Prince & Smolensky 
1993/2004). In this theory, an inclusive set of candidate outputs for a given input are compared in parallel 
across a set of constraints, presumed universal; some of these are MARKEDNESS constraints, proscribing 
output structures or configurations like their predecessors, while others are FAITHFULNESS constraints, pro-
scribing disparities between input and output. The constraints are violable and interact with each other via 
language-particular ranking: an output candidate 𝑥 is OPTIMAL — i.e., the actual output — if, for every 
comparison with an alternative candidate 𝑦, 𝑥 performs better than 𝑦 on the highest-ranked constraint that 
distinguishes them.24 

Among the advantages of this type of constraint interaction is that various types of blocking as well as 
triggering by constraint can be straightforwardly and insightfully analyzed. Consider again the case of neu-
tral vowels in vowel harmony, for example, following Baković (2000). Harmony for (say) the feature 
[±ATR] is there proposed to be driven by a markedness constraint AGREE[ATR], proscribing adjacent vow-
els with different values of [±ATR], ranked above a faithfulness constraint IDENT[ATR], proscribing changes 
in [±ATR] from input to output. A common neutral vowel in languages with ATR harmony is the [–ATR, 
+low] vowel /a/, the expected harmonic counterpart of which would be [+ATR, +low]. If another marked-
ness constraint 𝐶 proscribing this feature combination is itself higher-ranked than AGREE[ATR], then har-
mony obtains except when 𝐶 is at stake. Note that the position of 𝐶 in this constraint hierarchy also guaran-
tees the absence of the proscribed vowel from the segmental inventory: given a hypothetical [+ATR, +low] 

 
22 A long list of antecedent works on constraints in phonological theory is cited in Prince & Smolensky (1993/2004); 
see also the more recent historical discussion in Calabrese (2022). 
23 An alternative is to initially allow these vowels to undergo harmony and then to undo the non-structure-preserving 
result with an ‘absolute neutralization’ rule in Duke-of-York fashion and re-establishing structure preservation (Vago 
1976). In this case, the absolute neutralization rule can be understood to be triggered by structure-preserving 
constraints. 
24 This remarkably concise and accurate definition of optimality is originally due to Grimshaw (1997). 
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vowel in an input, the ranking of 𝐶 above IDENT[ATR] — obtained by transitivity via AGREE[ATR] — pro-
vokes a change from [+ATR] to [–ATR]. Another possibility is that hypothetical [+ATR, +low] vowels in the 
input change from [+low] to [–low], which is predicted if IDENT[ATR] is itself higher-ranked than 
IDENT[low]. Together with the previous ranking, this now predicts that harmony will always obtain but that 
/a/ will alternate with a [+ATR, –low] vowel.25  

Both of these predicted patterns are consistent with structure preservation and avoid what has been referred 
to as the ‘duplication problem’ (Kenstowicz & Kisseberth 1977; cf. Paster 2013). This type of analysis 
extends naturally to more complex patterns in which a single constraint is effectively responsible for block-
ing and/or triggering more than one of what would otherwise be characterized as separate processes, provid-
ing an account of the ‘conspiracies’ originally adduced by Kisseberth (1970); see e.g. Casali (1996, 1997) 
and Pater (1999). 

As alluded to in the final paragraph of Section 2, the lack of a direct analogue of a ‘process’ in OT makes 
it difficult to assess what the theory does and does not predict in terms of ‘process interaction’ as we have 
circumscribed this term in this chapter, and more importantly how it does and doesn’t predict it.26 The work 
cited in that paragraph takes that challenge on, though focusing mainly on the classical typology in (2) and 
in particular on the distinction between opaque and transparent interactions. One productive approach to 
understanding what OT predicts about process interaction is thus via the connection between opacity and 
output-drivenness (recall Section 4.2): since OT grammars, under some assumptions about constraints and 
the generation of output candidates, can only describe output-driven languages, opacity is out of their reach. 

6 Concluding remarks 
Our goals in this chapter have been to document how phonological processes of the form 𝐴 → 𝑏 / 𝐶 ＿ 𝐷 
have been proposed to interact with each other in generative phonology and to explore different ways of 
classifying different types of interactions, both from a local pairwise perspective and from the more global 
perspective of the phonological grammar as a whole. We also introduced our own formal approach to clas-
sifying process interactions, as ‘molecules’ composed of ‘atoms’ that precisely define how one process 
potentially affects the input or the output of another. In addition to properly distinguishing different types 
of interaction that had been classically lumped together, a promising result of this atom-based approach is 
its formalization of opacity in (12). Given that opaque phenomena of various types are perennially invoked 
in phonological theory comparisons, it is especially useful to have a formal definition — albeit one framed 
in terms of a particular model, involving serially-ordered processes like SPE — against which to weigh 
those comparisons. 

 
25 This prediction is borne out in the harmony patterns of Maasai and Turkana (Eastern Nilotic; see Baković 2000, 
Ch. 4). 
26 There are two significant models that add some kind of serial ordering to OT in limited and principled ways: 
Harmonic Serialism (McCarthy 2000, 2010) and Stratal (or ‘Derivational’) OT (Bermúdez-Otero 1999, 2010/2022; 
Kiparsky 2000, 2015, in press; Rubach 2000, 2020). Other notable efforts to build serialism and/or more process-like 
machinery into OT include sympathy (McCarthy 1999), targeted constraints (Wilson 2000, 2001), comparative 
markedness (McCarthy 2003), procedural constraints (Blumenfeld 2006), and OT with candidate chains (McCarthy 
2007; Wolf 2008, 2011). 
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