A formal characterization of disjunctive application

OVERVIEW

Using the formal framework of Baković & Blumenfeld (to appear), we precisely characterize the conditions under which two rules apply **DISJUNCTIVELY** rather than **CONJUNCTIVELY**. This formal characterization clarifies four key aspects of the **ELSEWHERE CONDITION** (Kiparsky, 1973, 1982; Baković, 2013): **CONTEXT INCLUSION, CHANGE** INCOMPATIBILITY, CIRCUMSTANTIAL BLOCKING, and LOCAL BLOCKING.

BACKGROUND

In the framework of The Sound Pattern of English (SPE; Chomsky & Halle 1968), rules are ORDERED and apply **CONJUNCTIVELY** such that the input of a given rule \mathcal{R}_i is the output of the preceding rule \mathcal{R}_{i-1} .

Fig. 1. Conjunctive application of rules in SPE. $/\phi_0/=$ UR, $[\phi_n] =$ SR, $\neg \Box (\phi_i \neq \phi_{i-1})$

In certain situations, a subset \mathbb{D} of rules applies **DISJUNCTIVELY** such that if any $\mathcal{R}_k \in \mathbb{D}$ is applicable to a representation ϕ_{k-1} , \mathcal{R}_k applies and all remaining $\mathcal{R}_{k+m} \in \mathbb{D}$ are blocked from applying to $\phi_{k+(m-1)}$. In SPE, disjunctive application was restricted to rules abbreviable by parentheses and other notations; e.g. the Latin stress rule in (1).

(1) V \longrightarrow 'V / ____ C₀(($\breve{V}C_0^1$)VC₀)# a. V \longrightarrow 'V / ____ C₀VC₀¹VC₀# b. V \longrightarrow 'V / ____ C₀VC₀# c. V \longrightarrow 'V / ____ C₀#

If a given expansion applies to a representation ϕ_k , remaining expansions are blocked from applying to ϕ_{k+m} . This mode of application is 'disjunctive' because either (1a), (1b), or (1c) applies to any form.

ELSEWHERE

The Elsewhere Condition (Kiparsky, 1973) unifies stress-rule cases with others that cannot be notationally abbreviated; Kiparsky (1982) shows that metrification obviates stress disjunctivity. Two criteria and two properties hold of the remainder (Baković, 2009, 2013).

- A rule $\mathcal S$ disjunctively blocks another rule $\mathcal G$ iff (2)
 - PROPER INCLUSION OF CONTEXTS The contexts of applicability of \mathcal{S} are properly included in those of \mathcal{G} .
 - INCOMPATIBILITY OF CHANGES The changes made by \mathcal{S} and \mathcal{G} are incompatible with one another.
- Phenomenological properties of disjunctive blocking (3)
 - CIRCUMSTANTIAL BLOCKING \mathcal{G} is blocked from applying to foci in substrings having the shape of outputs of \mathcal{S} , regardless of whether \mathcal{S} is 'responsible' for those foci.
 - LOCAL BLOCKING ${\cal G}$ is only blocked from applying to the subset of potential foci of ${\cal S}$ in a substring, not also to other potential foci of \mathcal{G} in the same form.

Eric Baković, UC San Diego | ebakovic@ucsd.edu

antepenult if penult is light: 'refecit, re'fugio ... otherwise, penult: re'fēcit, re'fector, 'regit ... otherwise, ultima: 'rē, 'rem, 'rēs, 'ruct

(a.o.t. 'applicational' blocking)

(a.o.t. 'global' blocking)

ENGLISH

(4)	$\mathcal{G} \colon \mathrm{V} \longrightarrow \breve{\mathrm{V}}$	/ C	0 V	S.
	/	$('\sigma$	(σ)	

Shortening (\mathcal{G}) applies to **any vowel** in a bisyllabic foot head:

o('păci)〈ty〉	di('vĭni)〈ty〉	Se
cf. o('pāque)	cf. di ('vīne)	С

Lengthening (S) applies only to (a) **a** [-high] vowel in a bisyllabic foot head, and only if the non-head vowel (b) is *i* and (c) is in hiatus:

<i>re('mēdi)</i> ⟨ <i>al</i> ⟩	(a) (<i>'jōvi</i>)〈al〉	(b) (
cf. ('rĕmĕ) $\langle dy angle$	vs. ('trĭvi)⟨al⟩	VS.

Shortening is **CIRCUMSTANTIALLY BLOCKED** by Lengthening in ('grādi)〈ent〉, cf. ('grāde); (,Shake)('spēari)〈an〉, cf. ('Shake)(,spēare), even though Lengthening is not 'responsible' for these long vowels.

DIOLA FOGNY

(5) $\mathcal{G}. \ C \longrightarrow \aleph / - C \qquad \mathcal{S}. \begin{vmatrix} C \\ +nasal \end{vmatrix} \longrightarrow [\alpha place] / - \begin{vmatrix} -cont \\ \alpha place \end{vmatrix}$

Deletion (\mathcal{G}) applies to **any consonant** before another consonant:

lexkudzaw 'they won't go'

ko**⊠**koben 'yearn, long for'

Assimilation (S) applies only to (a) **a [+nasal] consonant**, and only when it stands before (b) a [-cont] consonant:

(b) *nimammaŋ* 'I want' (a) *nigaŋgam* 'Ljudge' vs. *nalaxlap* 'he returned' vs. lexkudgaw 'they won't go'

Assimilation is LOCALLY BLOCKED by Deletion in numandai: Manda 'you know them', applying to m and blocked only in the *pd* substrings.

FORMALISM

Baković & Blumenfeld (to appear) propose a formal framework for understanding interactions among conjunctively ordered rules.

$$se \xrightarrow{\mathcal{R}+i\mathcal{P}} si$$

$$\downarrow$$

$$\int e \xrightarrow{\mathcal{R}+o\mathcal{P}} fi$$

Fig. 2. \mathcal{R} aising FEEDS \mathcal{P} alatalization $\mathcal{R} = e \rightarrow i / --- \#; \mathcal{P} = s \rightarrow f / --- i$

Fig. 3. \mathcal{L} owering **BLEEDS** \mathcal{P} alatalization $\mathcal{L} = i \longrightarrow e / --- \#; \mathcal{P} = s \longrightarrow f / --- i$

For two rules to interact, one rule must provide inputs and/or outputs to the other or remove inputs and/or outputs from the other. Input/output-provision/removal are atoms of molecular interactions.

	provision	removal	UI •
input	$\mathcal{A}+i\mathcal{B}$	$\mathcal{A}-i\mathcal{B}$	
output	$\mathcal{A}+ o\mathcal{B}$	$\mathcal{A}-0\mathcal{B}$	■ IVI W

Fig. 4. Atoms of molecular interactions

Lev Blumenfeld, Carleton University | lev.blumenfeld@carleton.ca

(Kenstowicz, 1994; Halle, 1995; Baković, 2013)

 $\begin{bmatrix} V \\ -high \end{bmatrix} \longrightarrow \overline{V} / _ C i V$ σ σ)

se('rĕni)〈ty〉 se('rēne) ('tĭpi)(cal) cf. (**'type**)

 $('r\bar{a}di)\langle al\rangle$ 'grādi) < ent > vs. ('rădi)(cal) 'grădu)(al)

(Sapir, 1965; Kiparsky, 1973; Ito, 1988)

ujuXja 'if you see'

NDERAPPLICATION

hen $\langle B > A \rangle$, *B* underapplies if A + iB.

IISAPPLICATION hen $\langle B > A \rangle$, *B* misapplies if A - oB. Fig. 5. Opaque interaction atoms

CHARACTERIZATION

The two criteria and two phenomenological properties of rules that apply disjunctively appear to be facets of a single atom: $\mathcal{G} - o\mathcal{S}$.

$$re('m \breve{e}di)\langle al \rangle$$

$$\mathcal{G}+i\mathcal{S}, \mathcal{G}-o\mathcal{S}$$

Fig. 6. Lengthening (4S) and Shortening (4G)

These two types of cases satisfy the two key criteria in (3) as follows.

Blocking of \mathcal{G} has the right phenomenological properties:

CONCLUSION

Viewed from our formal perspective, disjunctive blocking is one way to avoid specific instances of what would otherwise be opaque misapplications of S if $\langle S > G \rangle$ and G - oS. $\langle G > S \rangle$ is an alternative for English (albeit resulting in Duke of York derivations), but not for Diola Fogny; this case requires otherwise restricting \mathcal{G} to the complement of \mathcal{S} , for example Ito's (1988) prosodic licensing alternative.

REFERENCES

Anderson, S. R. 1974. The Organization of Phonology. Academic Press. • Baković, E. 2009. Local blocking and minimal violation. CLS 45. • Baković, E. 2013. Blocking and Complementarity in Phonological Theory. Equinox. • Baković, E. & L. Blumenfeld. to appear. A formal typology of process interactions. Phonological Data & Analysis. • Chomsky, N. & M. Halle. 1968. The Sound Pattern of English. Harper & Row. • Halle, M. 1995. Comments on Burzio (1995). GLOT International 1. • Ito, J. 1988. Syllable Theory in Prosodic Phonology. Garland. • Kenstowicz, M. 1994. Phonology in Generative Grammar. Blackwell. • Kiparsky, P. 1973. "Elsewhere" in phonology. In S. R. Anderson & P. Kiparsky (eds.) A Festschrift for Morris Halle, Holt, Reinhart, and Winston. • Kiparsky, P. 1982. From cyclic phonology to lexical phonology. In H. van der Hulst & N. Smith (eds.), The Structure of Phonological Representations, Foris. • Sapir, D. 1965. A Grammar of Diola-Fogny. Cambridge.

Fig. 7. Assimilation (5*S*) and Deletion (5*G*)

• PROPER INCLUSION: $[\mathcal{S}(x) \neq x] \Longrightarrow [\mathcal{G}(\mathcal{S}(x)) \neq \mathcal{S}(x)]$ If $\mathcal S$ applies to a representation x nonvacuously, then the result of applying $\mathcal G$ to $\mathcal{S}(x)$ is also nonvacuous — in other words, $\mathcal{G} - o\mathcal{S}$ is **TOTAL** on all strings Σ^* . • English: $\left[\mathcal{S}(re(m\underline{edi})\langle \underline{al} \rangle) = re(m\underline{edi})\langle \underline{al} \rangle\right] \Longrightarrow \left[\mathcal{G}(re(m\underline{edi})\langle \underline{al} \rangle) = \mathcal{G}(re(m\underline{edi})\langle \underline{al} \rangle) = re(m\underline{edi})\langle \underline{al} \rangle\right]$ • Diola Fogny: $\left[S(niga\underline{mg}am) = niga\underline{ng}am \right] \Longrightarrow \left[G(niga\underline{mg}am) = G(niga\underline{ng}am) = niga\underline{\aleph}gam \right]$ (Total output-removal is reminiscent of Anderson's (1974, 207) interesting concept of a hemorrhaging interaction.)

• **INCOMPATIBILITY:** $\forall x, S | G(x) = undefined$ ('A | B(x)' is simultaneous application of A and B to x) Incompatible changes are those that cannot apply simultaneously. The changes must apply to the same segment and be contradictory, which implies that at least one rule must output-remove the other: $\mathcal{G} = 0\mathcal{S}$. • English: The result of simultaneously lengthening and shortening a vowel is undefined. • Diola Fogny: The result of simultaneously assimilating and deleting a nasal is undefined.

BLOCKING DEFINED: Suppose rules \mathcal{S}, \mathcal{G} meet the criteria above. For every nonvacuous mapping $\mathcal{S}(x) = y$, the otherwise expected mapping $\mathcal{G}(y) = z$ is **BLOCKED**. Rule \mathcal{G}' is obtained by removing all such blocked mappings from \mathcal{G} , and \mathcal{G} is replaced by \mathcal{G}' in the grammar.

• **CIRCUMSTANTIAL BLOCKING:** \mathcal{G} is blocked whenever $\mathcal{G} - o\mathcal{S}$. Regardless of whether S applies vacuously (S(x) = x) or nonvacuously $(\mathcal{S}(x) \neq x), \mathcal{G} = O\mathcal{S}$ holds of any map $\mathcal{G}(\mathcal{S}(x)) \neq \mathcal{S}(x).$ • English: $(Shake)(Speari)(an) \in Out(S)$, regardless of whether S is 'responsible' for the long vowel.

• LOCAL BLOCKING: \mathcal{G} is only blocked whenever $\mathcal{G} - o\mathcal{S}$. Cases with multiple loci require more complex machinery.* Briefly, any string can be broken up into substrings each with one locus of application, and the formal properties can be evaluated separately for each substring.

• Diola Fogny: numands is mands = numands is $\sqrt{n} ands$ is $\sqrt{n} ands$; $\sqrt{2} - oS$ only holds of the first and third concatences. *See Baković & Blumenfeld (to appear, §3.3) for details on what are there called 'nonvacuous breaks' (NVBs)